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Abstract. We discuss a practical method to determine the eigenvalue spectrum of the empirical correlation
matrix. The method is based on analysis of behavior of a conformal map at a critical horizon which is
defined as a border line of the physical Riemann sheet of this map. The map is a convenient representation
of the Marčenko-Pastur equation.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics (see also section 05 Statistical
physics, thermodynamics, and nonlinear dynamical systems) – 02.60.-x Numerical approximation and
analysis

The relation between the eigenvalue spectrum of the em-
pirical covariance matrix and the spectrum of the underly-
ing covariance matrix plays an important role in many re-
search areas ranging from physics, telecommunication [1],
to information theory [2] and quantitative finance [3], and
has attracted great attention recently.

The problem can be mathematically formulated as fol-
lows. Suppose we have a statistical system with N de-
grees of freedom x = (xi), i = 1, . . . , N . We collect T
independent samples of x, each being a certain realization
Xα = (Xi)α of x, α = 1, . . . , T . The data are stored in a
rectangular matrix X = (Xiα) of dimension N × T . The
covariance matrix1 C: Cij = 〈xixj〉 can be estimated from
the data as c = (1/T )XXτ : cij = (1/T )

∑
t XitXjt, where

c is empirical correlation matrix. Here Xτ stands for the
transpose of X. For r ≡ N/T → 0 (N=const, T → ∞) the
empirical covariance matrix c perfectly approximates C.
However, in practice, the number of samples T is finite.
One is therefore interested in the relation between c and
C, in particular how well the eigenvalue distribution of c
approximates the eigenvalue distribution of C for finite r.

One can formulate the problem in terms of random
matrix theory [4,5]. One can think of c = (1/T )XXτ as
a matrix constructed of real2 Gaussian random matrix X.
The only requirement which one has to impose on the
probability measure for X is that the two-point correla-
tions are:

〈XiαXjβ〉 = δαβCij . (1)

Such an ensemble of matrices X is called correlated
Wishart ensemble [4–6]. The delta δαβ in the last equa-
tion tells us that the samples are uncorrelated, while Cij

a e-mail: bwaclaw@th.if.uj.edu.pl
1 For simplicity we will assume that ∀i: 〈xi〉 = 0.
2 One can also consider complex matrices. The large N-limit

is in this case identical as for real matrices.

that the degrees of freedom are correlated according to
the covariance matrix C.

The relation between the spectral density of c and C
is given by the Marčenko-Pastur equation [7]. This equa-
tion has been intensively studied in the mathematical lit-
erature [8,9]. The corresponding equations for correlated
samples, that is for the case when the delta δαβ is replaced
by a symmetric matrix Aαβ in equation (1), have been de-
rived recently [10] using a diagrammatic technique [4,11].

The purpose of the present paper is twofold. Firstly, we
want to describe a practical method to calculate the eigen-
value spectrum of the estimator c. Some similar meth-
ods have been discussed in the literature [8,9]. However,
we believe that a conformal map representation [5] used
here leads to a particularly simple and effective practi-
cal method. Secondly, the eigenvalue smearing and noise
dressing observed in the empirical correlation matrix c
have a simple interpretation in terms of the conformal
map, which we want to present.

In order to determine the relation between the eigen-
value densities of the covariance matrices c and C: ρc(x)
and ρC(x) it is convenient to introduce Green’s functions
(resolvents): G(z) = (1/N) tr (z1−C)−1, where z is a com-
plex variable, and correspondingly g(z) = (1/N)〈tr (z1−
c)−1〉, where the average is over X from a Wishart en-
semble with the correlations given by equation (1). Here
1 denotes an identity matrix of size N . It is also conve-
nient to introduce generating functions for the spectral
moments [5]:

M(z) =
∞∑

k=1

MCk

zk
, m(z) =

∞∑

k=1

mck

zk
, (2)

where MCk =
∫

ρC(λ)λkdλ and analogously for mck. The
generating functions are directly related to the resolvents:
M(z) = zG(z) − 1 and m(z) = zg(z) − 1.
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Fig. 1. Graphical representation of the map z = z(Z) given by equation (6). Each pair of points: Z = 1 + Reiφ and Z′ =
1+ (r/R)e−iφ is mapped onto the same point z = z′. While φ increases, Z and Z′ move along the circles in the directions given
by arrows. The critical horizon (dotted circle) has radius

√
r. The image of a circle |Z − 1| = R is an ellipse in z-plane, which

for R → √
r degenerates to an interval (dotted line).

One can show [5] that if N, T → ∞ with fixed r =
N/T and C being a constant matrix (however the last
assumption can be weakened), the function m(z) can be
calculated from M(Z) as follows:

m(z) = M(Z), (3)

where:
z = Z(1 + rM(Z)). (4)

Assume that we know the correlation matrix C. We can
calculate eigenvalues of C, λk and their multiplicities nk

(degeneracies), and determine M(Z):

M(Z) =
K∑

k=1

pkλk

Z − λk
, (5)

where pk = nk/N is the fraction of all eigenvalues taking
the value λk. For the later convenience we also assume
that the eigenvalues are ordered λ1 < · · · < λK .

For the given M(Z) we can apply the equations (3)
and (4) to determine m(z) and g(z) = (1 + m(z))/z and
further, from g(z) we can calculate the eigenvalue density
ρc(x) by taking the imaginary part of g(z) along the cuts
on the real axis: ρc(x) = −(1/π)Im g(x + i0+).

The equations (3) and (4) are equivalent to the
Marčenko-Pastur equation [7]. Let us now discuss their
physical content.

The equation (3) tells us that the function m(z) as-
sumes for r = 0 the same form as the function M(Z)
since in this case z = Z as follows from equation (4).

In this case the spectrum of the experimental matrix
c is identical as of the matrix C, as expected for T → ∞.
However for r > 0, z = z(Z) is a nontrivial function and
the relation of the generating function m(z) to the original
one M(Z) is not simple. The function M(Z) has poles on
the real axis at λk’s. We may ask whether one can see the
traces of the poles also in the function m(z).

In order to answer this question first consider the sim-
plest example λ1 = λ2 = . . . = λN = 1. The function
M(Z) = 1/(Z − 1) has only one pole and the conformal
map (4) takes the form:

z = Z

(

1 +
r

Z − 1

)

. (6)

Consider a point on the Z-plane in the distance R from
the pole: Z = 1 + Reiφ. The function (6) assumes the
value z = 1+r+Reiφ +(r/R)e−iφ the same as for a point
Z ′ = 1 + (r/R)e−iφ. As a consequence each point Z out-
side the circle |Z − 1| =

√
r has a partner Z ′ inside this

circle such that z(Z) = z(Z ′) as depicted in Figure 1. On
the limiting circle there are pairs of points: Z = 1+

√
reiφ

and Z ′ = Z̄ = 1 +
√

re−iφ for which z assumes the same
values. We see that the upper part of the semicircle is
mapped onto an interval [x−, x+], x± = (1±√

r)2 on the
real axis in the z-plane and so is the lower semicircle. In-
verting the function z = z(Z) one obtains a two-valued
function Z = Z(z) and thus one has to decide which Rie-
mann sheet to choose. The physical Riemann sheet corre-
sponds to the outside of the circle |Z − 1| =

√
r as follows

from the expansion (2). For the inverse function Z = Z(z)
the image of the whole z-plane is given by the outside of
the circle |Z − 1| =

√
r plus the upper semicircle which

is an image of the cut (see Fig. 2). We thus see that the
pole in the Z-plane is surrounded by a critical horizon be-
hind which the argument of the inverse function Z = Z(z)
never enters. Only when the horizon radius

√
r shrinks to

zero the variable Z can approach the “naked” pole.
As mentioned before, both semicircles of the critical

horizon |Z−1| =
√

r are mapped by the transformation (4)
onto the same interval [x−, x+] on the real axis which
makes the inverse function Z = Z(z) two-valued. To make
out of it a single-valued one one has to restrict the image
to either the upper or lower semicircle. This can be done
by approaching the cut from above: z = x+ i0+ to obtain
the upper semicircle or from below z = x + i0− for the
lower semicircle (Fig. 2). The imaginary part of g(z) =
(1 + M(Z(z))) /z gives, for z = x + i0+, the eigenvalue
density ρc(x).

We see that the shape of the eigenvalue density ρc(x)
is encoded in behavior of the conformal map (4) near the
critical horizon. This is true in the general case (5). The
poles of M(Z) are distributed on the positive real semi-
axis at λk’s. For r > 0 they are shielded behind a critical
horizon (see Fig. 3). In general there are K + 1 Riemann
sheets. We are interested in the one for which 1/z → 0
when 1/Z → 0 in equation (2). Thus the physical region
lies outside the critical horizon. It is symmetric about the
real axis. The upper part (Im Z > 0) is mapped by equa-
tion (4) onto intervals on the real axis in the z-plane and
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Fig. 2. The inverse function Z = Z(z): the z-plane without the real interval [x−, x+] is mapped onto the outside of the critical
circle in the Z-plane. The interval is mapped into the upper (or lower) part of the critical semicircle.

Fig. 3. Top: critical horizon for {λi} = {1, 2, 6} and for r =
1/100 (solid), r = 1/10 (dashed), r = 1/3 (dotted) and r = 1/2
(dash-dot). Bottom: the corresponding spectra ρc(x). Inset:
the spectrum for r = 1/3, calculated (solid line) and found
experimentally (dotted) for sample of 3 × 105 matrices of size
N = 48.

so is the lower one. When r is positive but very small each
pole has its own horizon, but when r is increased the in-
dividual horizons grow and merge so that the number of
connected components of the total horizon decreases with
r (see Fig. 3). For sufficiently large r a single critical hori-
zon surrounds all poles. The corresponding image of the
horizon on the z-plane has a single cut on the real axis.
For the limiting case r = 1, the cut touches the origin at
z = 0.

The discussion presented above can be turned into a
practical method of determining the shape of the eigen-
value distribution ρc(x). We have to find the inverse func-
tion Z = Z(z) to z = z(Z) (4), insert the solution to
M(Z) and determine behavior of the resulting function
along the cuts on the real axis. The equation (4) can be
analytically solved for Z only in few cases. In the general
case one has to use a numerical method. Fortunately, one
can bypass the problem of the explicit function’s inversion
by using a method described below.

In the first step we determine the critical horizon. Then
moving gradually along its upper part (ImZ ≥ 0) we cal-
culate z = z(Z) (4) which is in this case real (z = x+ i0+)
and simultaneously ρ̂c(Z) = −(1/π)Im(M(Z)+1)/z(Z) ≡
−(1/π)Im(m(z) + 1)/z which gives the eigenvalue density
ρc(x) = ρ̂c(Z). Briefly speaking, the method is to use the
auxiliary variable Z on the upper part of the horizon to
parametrize both the eigenvalue x = z(Z) and ρc(Z), and
to treat the pairs (x(Z), ρ̂c(Z)) as ρc(x). If the horizon
has many disconnected parts, also the cut and the sup-
port of the eigenvalue density function ρc(x) consists of
many disconnected intervals.

Let us describe how to determine the critical horizon.
If Z = X + iY is a point on the horizon, the imaginary
part of the map z = z(Z) (4) vanishes and we have:

K∑

k=1

pkλ2
k

(X − λk)2 + Y 2
=

1
r
. (7)

This equation has to be solved for Y = Y (X) for given X .
If the real solution exists it has two symmetric roots ±Y .
We are interested in the non-negative one Y ≥ 0 which
corresponds to Z on the upper part of the critical horizon.
Now we can calculate x = z(Z) and ρc(Z):

x(Z) = X + r

K∑

k=1

pkλk + r

K∑

k=1

pkλ2
k(X − λk)

(X − λk)2 + Y 2
, (8)

and

ρc(Z) =
Y

πx

K∑

k=1

pkλk

(X − λk)2 + Y 2
, (9)

which, after ignoring Z being a parameter, gives the pair
(x, ρc(x)). The two equations above are explicit so one can
directly compute x and ρc for any given Z if one knows
the dependence Y (X). This dependence can be obtained
by solving equation (7) for Y (X).
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The solution of equation (7) depends on r. The func-
tion on the left-hand side of (7) has a shape of a ‘hilly’
landscape when plotted on Z-plane, with K peaks of infi-
nite height located at the poles (λk, 0). The circumference
of each peak shrinks to zero for increasing altitude. The
solution of the equation lies on curves obtained as a cross-
section of the hilly landscape at height 1/r. One can think
of a coast line around islands surrounded by a sea with the
water level 1/r. For r → 0+, the level goes to infinity, and
thus the cross-section contains only the points at which
the peaks are located: (λk, 0). For r > 0 the level 1/r is fi-
nite, so the cross-section contains closed lines surrounding
the poles and forming the critical horizon. When the wa-
ter level drops the islands merge and the coast line grows
(Fig. 3).

One can find the points where the horizon crosses the
real axis by setting Y = 0 in equation (7). Among those
points, the leftmost X− and the rightmost X+ set the
limits on the minimal and maximal value of X where one
has to look for the horizon solution. The two points are
mapped by equation (4) onto x± being the lower and up-
per edge of the eigenvalue spectrum ρc(x). The values X−
and X+ can be easily found by a root finder algorithm ap-
plied to the equation (7) with Y = 0. Having determined
X− and X+ one can change X in small steps from X− to
X+ and for each X find the positive solution Y of equa-
tion (7) to eventually determine Z = X + iY (X) on the
horizon. In that way the problem is solved.

Let us now discuss examples. First we consider a cor-
relation matrix C having three eigenvalues {1, 2, 6} with
equal weights pk = 1/3. The critical horizon for different
r as well as corresponding eigenvalue spectra ρc(x) are
shown in Figure 3. The evolution of the critical horizon
with 1/r can be treated as a level map for the land-
scape (7). In the inset of Figure 3 we compare the spec-
trum for r = 1/3 with a spectrum obtained by diago-
nalization of n = 3 × 105 matrices of size N = 48 and
T = 144 chosen randomly from the corresponding Wishart
ensemble. The agreement is perfect up to a finite-size cor-
rections near the edges of the cut.

The second example is related to some practical prob-
lem. The portfolio selection is a central problem of quan-
titative finance. The importance of the random matrix
theory for this problem has been recently discovered [3].
It has been realized that the lower part of the spectrum
ρc has a universal shape stemming from statistical fluc-
tuations. The method which we described above gives a
refined tool allowing one to observe a fine structure of the
spectrum of the empirical matrix also in its lower part.
As an example we consider a correlation matrix obtained
for returns of 18 stocks on the Polish Stock Market. The
eigenvalues read: 0.36, 0.38, 0.47, 0.48, 0.56, 0.59, 0.64,
0.66, 0.68, 0.71, 0.78, 0.83, 0.89, 0.94, 0.95, 1.08, 1.16,
5.84, they are normalized to

∑
k λk = N . In Figure 4 we

show the expected eigenvalue spectrum of c for N = 18
and for T = 54 (r = 0.333) and T = 255 (r = 0.0706). For
small r a fine structure emerges in the spectrum. In fig-
ure the spectrum is also compared to the one obtained by
diagonalization of n = 3 × 105 correlated Wishart matri-

Fig. 4. Solid line: ρc(x) for N = 18 eigenvalues of C taken
from Polish Stock Market, for T = 54 ↔ r = 0.333 and
T = 255 ↔ r = 0.0706, calculated using the method described
in this paper. Dashed line: ρc(x) obtained by diagonalization
of 3 × 105 Wishart matrices generated by a Monte-Carlo pro-
cedure.

ces. The agreement is very good. This means that already
for N of order 20 the large N limit, in which the analyt-
ical equations have been derived, applies. Deviations are
observed only at the edges of the individual parts of the
spectrum.

To summarize: statistical properties of random matri-
ces and complex analysis are very intertwined. We used
here this interrelation, or more precisely a conformal map
representation of the Marčenko-Pastur equations, to de-
rive a general, practical method for the determination of
the eigenvalue distribution for the standard estimator of
the covariance matrix. This method can also be applied
to the corresponding equations [10] for the case of a corre-
lated sample where the delta function δαβ in equation (1)
is substituted by a correlation matrix Aαβ �= δαβ.

The method described in the paper is valid in prin-
ciple in the limit of large matrices. In practice, however,
already for matrices of moderate size, of order 20 × 20,
it gives good results. Indeed, we have checked numerically
that spectrum ρc converges fast to the limiting shape. De-
tailed calculations of the rate of convergence for spectral
moments mck can be found in [12]. Since we assumed that
C is independent of N, T , the first correction to mck stem-
ming from the finite size effects is of order O(1/N) [10] or
equivalently of order O(1/T ) as r = N/T is fixed [12].

The method presented here works for matrices from a
Gaussian ensemble. In the presence of heavy tails one has
to use different methods as for instance those discussed
in [13,14].
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